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ABSTRACT:  

The diagonal-mass-matrix spectral element method has proven very successful in geophysical applications dominated by 
wave propagation. For these problems, the ability to run fully explicit time stepping schemes at relatively high order 
makes the method more competitive then finite element methods which require the inversion of a mass matrix.  The 
method relies on Gauss-Lobatto points to be successful, since the grid points used are required to produce well 
conditioned polynomial interpolants, and be high quality “Gauss-like” quadrature points that exactly integrate a space of 
polynomials of higher dimension than the number of quadrature points.

These two requirements have traditionally limited the diagonal-mass-matrix spectral element method to use square or 
quadrilateral elements, where tensor products of Gauss-Lobatto points can be used.  In non-tensor product domains such 
as the triangle, both optimal interpolation points and Gauss-like quadrature points are difficult to construct and there are 
few analytic results. To extend the diagonal-mass-matrix spectral element method to (for example) triangular elements, 
one must find appropriate points numerically.  One successful approach has been to perform numerical searches for high 
quality interpolation points, as measured by the Lebesgue constant (Such as minimum energy electrostatic points and 
Fekete points).  However, these points typically do not have any Gauss-like quadrature properties.

In this work, we describe a new numerical method to look for Gauss-like quadrature points in the triangle, based on a 
previous algorithm for computing Fekete points.  Performing a brute force search for such points is extremely difficult.  
A common strategy to increase the numerical efficiency of these searches is to reduce the number of unknowns by 
imposing symmetry conditions on the quadrature points.  Motivated by spectral element methods, we propose a different 
way to reduce the number of unknowns: We look for quadrature formula that have the same number of points as the 
number of basis functions used in the spectral element method’s transform algorithm.  This is an important requirement 
if they are to be used in a diagonal-mass-matrix spectral element method.

This restriction allows for the construction of cardinal functions (Lagrange interpolating polynomials). The ability to 
construct cardinal functions leads to a remarkable expression relating the variation in the quadrature weights to the 
variation in the quadrature points. This relation in turn leads to an analytical expression for the gradient of the 
quadrature error with respect to the quadrature points.  Thus the quadrature weights have been completely removed from 
the optimization problem, and we can implement an exact steepest descent algorithm for driving the quadrature error to 
zero.

Results from the algorithm will be presented for the triangle and the sphere.



Diagonal-mass-matrix spectral 
element methods

● Nodal sets for quadrilaterals:  

– Pd  = span { xmyn : n<d, m<d }

– Tensor product of Gauss-Lobatto points

– Cardinal function basis {ϕ
i
} for Pd 

– Small Lebesgue constant 

– Gauss-like quadrature



Diagonal-mass-matrix spectral 
element methods

● Nodal sets for triangles:  

– Pd  = span { xmyn : n+m<d}

– Points are not known analytically 

– Cardinal function basis {ϕ
i
} for Pd  

– Small Lebesgue constant? 

– Gauss-like quadrature?



Lebesgue Constant  

Max norm of interpolation operator I:

Small Lebesgue constant = well conditioned cardinal function basis:

∥ f −I  f ∥  ∥I∥ ∥ f −g∥ ∀ g∈Pd

∥I∥∞

∥I∥=max
z∈
∑

i

∣i  z ∣



Lebesgue Constant

Hesthaven, From electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation In A Simplex, SIAM J. Numer Anal, 1998
Taylor, Wingate, Vincent, An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal., 2000



Gauss-Like Quadrature

∫


f i i∈Pd

Spectral element methods have integrals of the form:

To evaluate these integrals with quadrature points {z
i
} 

∫


g=∑
i

w i g  z i ∀ g∈Pde

Gauss Points:                    e = d + 1
Gauss-Lobatto Points:      e = d - 1
Gauss-Like quadrature:    e >> 1



Notation

{g j}=Pde
span

Koornwinder Polynomial basis  {g
j
(ζ)} for Pd+e      

= x , y∈
Coordinate in the triangle:   

z={z1, z2, ... z N }
Quadrature points {z

i
} and weights {w

i
}:  

w={w1, w2, ... wN }



Traditional Algorithm for Quadrature 
Points

Solve for quadrature points {z
i
} and weights {w

i
}:

F k=0 ∀ k : gk∈Pde

Symmetry: If the points are invariant under the action of a group 
(such as D

3
), we need only solve F=0 for the subspace of Pd 

invariant under D
3

Wandzura, Xiao, Symmetric Quadrature Rules on a Triangle, Comp. Math. App., 2003 
Lyness, Jesperson, Moderate degree symmetric quadrature rules for the triangle, J. Inst. Math. Appl. 1975

F k=∑
i

w i gk  z i−∫


g kLet: 



Traditional Algorithm for Quadrature 
Points

 zwt=−dF −1 F

∂ F j

∂wi

=g j  z i
∂ F j

∂ z i

=wi g ' j  z i

Newton Iteration:



Cardinal Function Algorithm

1. Require N = dim Pd  so we can construct cardinal functions {ϕ
i
}

     
2. Work with spectral representation of cardinal functions:

i =∑
k

i
k gk 

3. Define quadrature weights: wi= i
0

Then:  ∫


g=∑
i

wi g  z i ∀ g∈Pd



Cardinal Function Algorithm

F k=∑
i

w i g k  z i=0 ∀ k : gk∈Pde−Pd

z t=−dF −1 F

Reduced number of unknowns from 3N to 2N
Reduced number of equations by dim Pd = N

Equations:

Newton Iteration:



Cardinal Function Algorithm

∂ F j

∂ z k

=wk g ' j  z k ∑
i

g j  z i
∂wi

∂ z k

∂w i

∂ z k

=?



Cardinal Function Algorithm

∂i

∂ z k

 = − ' i  z k  k 

∂wi

∂ z k

=− ' i  z k wk

wi= i
0

Assuming 



Cardinal Function Algorithm

∂ F j

∂ z k

=wk g ' j  z k −∑
i

 ' i  z k g j  z i

z t=−dF −1 F

w i= i
0

F k=∑
i

w i gk  z i ∀ k : gk∈Pde−Pd

Newton Iteration: 



Results

● Solution of cardinal function algorithm gives 
quadrature formula for Pd+e of the form: 

– Cardinal function requirement:  N = dim Pd

– Degrees of freedom requirement: 2N ≥ dim (Pd+e-Pd)

● Optimal solutions found for all cases tried 
(d+e<24) 

● Includes 6 new quadrature sets



Results

Cools,  An encyclopaedia of cubature formulas, Journal of  Complexity, 2003
Wandzura, Xiao, Symmetric Quadrature Rules on a Triangle, Comp. Math. App., 2003 



Points for degree 7

Quadrature (degree 13)                                             Fekete



Points for degree 9

Quadrature (degree 16)                                          Fekete



Points for degree 10

Quadrature (degree 18)                                          Fekete



Points for degree 11

Quadrature (degree 20)                                           Fekete



Points for degree 12

Quadrature (degree 21)                                           Fekete



Points for degree 13

Quadrature (degree 23)                                           Fekete



Lebesgue Constant



Conclusion

● Cardinal function Quadrature algorithm
– Optimal formulas found numerically up to degree 23

– 6 formulas improve on previous best-known results

● Small Lebesgue constant ≠  Good Quadrature


